On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators

نویسنده

  • Zhong Lin Wang
چکیده

Self-powered system is a system that can sustainably operate without an external power supply for sensing, detection, data processing and data transmission. Nanogenerators were first developed for selfpowered systems based on piezoelectric effect and triboelectrification effect for converting tiny mechanical energy into electricity, which have applications in internet of things, environmental/ infrastructural monitoring, medical science and security. In this paper, we present the fundamental theory of the nanogenerators starting from the Maxwell equations. In the Maxwell’s displacement current, the first term e0 @E @t gives the birth of electromagnetic wave, which is the foundation of wireless communication, radar and later the information technology. Our study indicates that the second term @P @t in the Maxwell’s displacement current is directly related to the output electric current of the nanogenerator, meaning that our nanogenerators are the applications of Maxwell’s displacement current in energy and sensors. By contrast, electromagnetic generators are built based on Lorentz force driven flow of free electrons in a conductor. This study presents the similarity and differences between pieozoelectric nanogenerator and triboelectric nanogenerator, as well as the classical electromagnetic generator, so that the impact and uniqueness of the nanogenerators can be clearly understood. We also present the three major applications of nanogenerators as micro/nano-power source, self-powered sensors and blue energy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using an Appropriate Controller for Independent Current Control for Motoring of Force Windings of Bearing less Induction Motor

A bearingless induction machine has combined characteristics of induction motor and magnetic bearings. Therefore, the advantages are small size and low-cost. In the magnetic suspension of the bearingless motors, suspension forces are generated based on the feedback signals of displacement sensors detecting the movement of the rotor shaft. The suspension forces are generated taking an advantage ...

متن کامل

Noise Equivalent Power Optimization of Graphene- Superconductor Optical Sensors in the Current Bias Mode

In this paper, the noise equivalent power (NEP) of an optical sensor based ongraphene-superconductor junctions in the constant current mode of operation has beencalculated. Furthermore, the necessary investigations to optimize the device noise withrespect to various parameters such as the operating temperature, magnetic field, deviceresistance, voltage and current bias have been presented. By s...

متن کامل

About the Physical Reality of “Maxwell’s Displacement Current” in Classical Electrodynamics

This work aims to provide a physical interpretation of the “Maxwell’s displacement current” and generalize the use of the derivative function of the electrical flux “dΨ/dt” in the magnetic field calculation. The innovative contribution of this study is a mathematical model to describe the origin of magnetic field as a variation of electric flux. By this approach, it follows that only the functi...

متن کامل

From Maxwell’s displacement current to superconducting current

We investigate the nature of the superconducting current from the Maxwell’s displacement current. We argue that the conduction current density term of the Maxwell’s equations is physically untrue, and it should be eliminated from the equations. Essentially, both the superconducting current and conduction current are originated from the Maxwell’s displacement current characterizing the changes o...

متن کامل

A theoretical model for analysis of ionic polymer metal composite sensors in fluid environments

By the past two decades IPMCs have been intensively studied because of their special capabilities for actuation and sensing.This paper presents a theoretical physics based model for analyzing the behavior of IPMC sensors in fluid environments. The mechanical vibration of the IPMC strip is described by the classical Euler–Bernoulli beam theory. The model also takes in to account the physical pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017